ActionFactory Documentation

[image: image1.wmf]ReadMesh

ReadSol

Compute

Euler

Compute

Drag

Data flow programming

ReadMesh(MyMesh);

ReadSol(MySol);

ComputeEuler(MyMesh, MySol);

ComputeDrag(MyMesh,MySol);

Script programming

 Action factory

ReadMesh

ReadSol

Compute

Euler

Compute

Drag

Object factories list

Objects list

MyEulerFactory = bind("MySP2Eugenie");

MyPostFactory = bind('MyJTkSGI");

My3D = bind("Grid3D");

MyEugenie = MyEulerFactory->Create();

MyEugenie->SetMesh(My3D->GetMesh());

MyEugenie->SetSol(My3D->GetSol());

MyEugenie->Solve();

MyGlobalInteg = MyPostFactory->Create(My3D);

MyGlobalInteg->GetDrag();

Direct CORBA

process controller programming

Processor

1

Processor

2

Processor

3

Processor

N

Parallel implementation

Euler

Factory

JTk

Factory

3D grid

Object implementation

[image: image2.png]
Action Factory 1.0b

Concept and Utilisation

Doc Version 3.0
Pierre Lafraise - Dassault Aviation

Revision:
15.11.00 12:11
COPYRIGHT AND CONFIDENTIALITY NOTICE

The work described in this document was performed at Dassault Aviation.

No part of this publication may be reproduced or transmitted in any form

or by any means, whether electronic, mechanical, photocopying or

recording or otherwise; nor stored in any information retrieval system of any kind;

nor used for tendering or manufacturing; nor communicated to any person,

 without the prior written permission of the copyright owner.

© 1998, 1999, 2000, Dassault Aviation, France.

All Rights Reserved

1
Introduction
5
2
Presentation of the Action Factory
6
2.1
Simulation Execution Strategy
6
2.2
Object Oriented Components
7
2.3
Action Factory : a Functional / Object bridge
8
2.3.1
Action Factory class
8
2.3.2
Action class
8
2.3.3
Action class creation
9
2.4
IRIS Explorer Modules as 6S VPE
9
2.5
Scripting Programming
10
3
Action Generation Tool
11
3.1
Prerequisites
11
3.2
Environment
11
3.3
Configuration Files
11
3.3.1
Action Configuration Files
12
3.3.2
Factory Action Configuration File
13
3.4
Generating the Action Factory Layer
14
3.5
Adding the source Code in the Actions
15
3.6
Compiling the Action Factory Server
16
3.7
Building the IE Modules
20
3.8
Creating the Alauda Orders
20

Introduction

The document aims at presenting the Action Factory layer used in the Julius project.

First, a presentation of the layer illustrates the role it has in 6S.

Then, user guide will explain how it is possible to create an Action Factory and how to interact with it.

The third part will show how to integrate some CORBA Object in the different layers of the product.
Presentation of the Action Factory

1.1 Simulation Execution Strategy

Simulation we relied on are supposed to be based on CORBA components. An innovative part of the 6S architecture relies on the use of the Action Factory concept that will be detailed in this document. The Action Factory represents a bridge between the functional representation of a complex multi-disciplinary simulation and the object oriented implementation. It allows to hide the implementation to the final end-user who’s still thinking and specifying his problem with a functional approach which is his natural way of thinking.

The figure below presents, using a simple example, in more detail the 6S architecture and especially how the different “layers” of the framework are interacting.

6S Supervisor

[image: image3.wmf]ReadMesh

ReadSol

Compute

Euler

Compute

Drag

Data flow programming

ReadMesh(MyMesh);

ReadSol(MySol);

ComputeEuler(MyMesh, MySol);

ComputeDrag(MyMesh,MySol);

Script programming

 Action factory

ReadMesh

ReadSol

Compute

Euler

Compute

Drag

Object factories list

Objects list

MyEulerFactory = bind("MySP2Eugenie");

MyPostFactory = bind('MyJTkSGI");

My3D = bind("Grid3D");

MyEugenie = MyEulerFactory->Create();

MyEugenie->SetMesh(My3D->GetMesh());

MyEugenie->SetSol(My3D->GetSol());

MyEugenie->Solve();

MyGlobalInteg = MyPostFactory->Create(My3D);

MyGlobalInteg->GetDrag();

Direct CORBA

process controller programming

Processor

1

Processor

2

Processor

3

Processor

N

Parallel implementation

Euler

Factory

JTk

Factory

3D grid

Object implementation

Functional

 Object-oriented

Parallel Computing

On the users side, we propose 3 strategies to activate a CORBA based simulation. Most of the users like to benefit from a Functional approach as :

· Visual Programming Environment as proposed by the Visual Programming Environment..

· Simple Scripting programming as proposed by Alauda server.

The last strategy is to use some Process Controllers developed in Java or C++. They are executables that deal directly with the CORBA object used in the simulation.

Main differences between the functional approaches and the process controller approach is that the later does not provide any interactive and on-the-fly simulation building. The functional approach, due to the Action Factory layer, will provide such functionalities.

1.2 Object Oriented Components

Simulation we want to execute are based on some distributed components. They are CORBA objects. For example, these basic objects are encapsulating the simulation code as aerodynamic solver, data extraction library and other Mesh objects. Once such an object is defined using the CORBA norm, we propose a strategy to create and activate it.

This layer is called Object Factory. This is a common design pattern. Main idea is to develop a CORBA server, called a Factory whose role is to create and delete the basic objects. It can be registered in an automatic activation daemon (in ORBIX, for example) or in a CORBA naming service in order the client application to be able to connect to it.

Advantages of this factory is to limit the number of servers and to control more efficiently the life of basic objects. The memory allocation, the garbage collection and the reference counting is then done by the Objects Factory.

In a practical way, we can define several classes with these functionalities (for example, Factory Object Dummy). Each class inherits from a generic class : FactoryObjects.

The FactoryObjects class implements some methods as :

· get AvailableObjectsList : Get the list of all the objects created by the factory

· setOutputFile : send standard outputs of all objects created by the factory in a file etc...

Other methods are virtual in FactoryObjects :

· deleteObjects : Delete an object created by the factory. It has to be implemented in the Factory Object Dummy
The problem that leads to the conception of the Action Factory is to provide the end-user a functional view of the simulation and to hide him the Object approach. A first solution is to build some data-flow modules, as VPE or IRIS Explorer modules, that interact directly with the Object Factory and the basic objects, as some client programs do. Unfortunately, if we want to use a scripting approach or to use another Visual Programming Environment, we need to re-build corresponding modules that in fact will do exactly the same invocation on the basic objects methods. This maintenance aspect leads to develop an interface layer, more stable, that is a client of the basic objects and the object factory. This interface layer will be used by both the VPE used (as IRIS Explorer) and by the Scripting Programming approach. It is called the Action Factory layer.

On the object oriented layer, we propose a way of defining some object oriented components. But any other kind of object server can be integrated in the Action Factory approach.

1.3 Action Factory : a Functional / Object bridge

1.3.1 Action Factory class

The Action Factory is a bridge between the objects oriented servers (as Object Factories server) and the functional applications (IRIS Explorer or scripting program).

In a practical way, it is possible to define some specialized class, for example Action Factory Foo that inherits from the generic Action Factory class. We define a server for each Action Factory Foo. These specialized classes use the basic objects requested for the simulation and created by the Factory Objects.

The Action Factory Foo acts as a client to the basic Objects. It is a server for the functional applications. On a normal utilisation, the functional applications interact only with the Action Factory server. Using the inheritance, the functional applications use in reality the Action Factory Foo. They are only client of the Action Factory so they do not need to know the IDL of the basic object.

The only case that breaks this rule is if the functional application needs to get some data from the basic objects. For example, IRIS Explorer has some powerful interactive visualisation tools. But in order to use it, the IRIS Explorer Render module need to get the data to render (of course !!!). Then, the Action Factory can provide a binding to the CORBA object that contain the data. We treat these specialized module separately.

The Action Factory Foo can be automatically build by an integrator using the ActionGeneration tool. This tools is described in the next part of the document.

1.3.2 Action class

What is important to know is that the Action Factory layer will use some atomic Actions that are some precise client of the basic objects.

An action execution will take basic objects as inputs, use them and provide basic objects as outputs. An output can be an input objects that have been modified (data-flow approach...) but it also can be new object. The action can ask also for parameters for the execution (set by the user in run-time).

Main idea is that the action does not create objects itself but always ask the creation of some basic objects to the objects servers, for example to some Objects Factory server. This allow to keep the basic objects in the object oriented layer. Then 2 different functional applications can use the same basic objects (in order to spy a simulation for example). An action is then a transient object. It is not kept alive after the execution of the action.

1.3.3 Action class creation

For automatically creating actions code using the Action Generation tool, the integrator will then need to provide for the FactoryActionFoo the list of actions this Factory will manage.

For automatically creating code actions using the Action Generation tool, the integrator will then need to provide for each action :

· Inputs objects

· Output objects

· Parameters

· Servers that the action execution need to connect with

· Source code of the core of the execution (client part that uses the basic objects). The action factory will take in charge to “bring” in the execution part, the proxies on the basic objects in input, the binding to the requested servers, the declaration to the output objects and the parameters filled. The integrator who fills this part only needs to know the way of using the basic objects he wants to interact with but he does not need to know how the Action factory layer is coded.

The Action Generation tool that automatically implements the actions class is presented in the next part of the document.

Using the abstraction concept, the functional applications never use directly the actions objects but always via an Action Factory.

What is provided to the functional application is the possibility to sequence some actions. All methods are provided to the functional applications for :

· Asking the execution of an action

· Asking information about the available actions in the Action Factory Foo

· Asking information for each action about the parameters, inputs, outputs and requested basic servers (name, type, number etc...)

The Action Factory will then take in charge :

· Creation and execution of the actions (then the interaction with the basic objects)

· Bind of the basic Objects Servers (as the Objects Factory servers)

· Link basic objects to the action inputs

· Referencing of all basic servers and objects

· Distributed aspects of the basic servers

Once the Action Factory Foo has been defined, functional applications are able to interact with this layer.

1.4 6S VPE

6S provides a Visual Programming Environment, called VPE, that enable end-users to steer a simulation graphically. You can then build on the fly your own simulation, using various modules in a data-flow approach.

The main functionalities of this layer is to provide the end-user a visual way of building an application. The complex simulation will then be built from a assembly of pre-defined modules. Modules are mapped to the already defined actions set in the Action Factory layer.

It is then necessary to have an Action Factory layer (for example, FactoryAction Foo) in order to be able to use the corresponding modules in the VPE.

For more information, please use the VPE users guide.

1.5 Scripting Programming

Another functional approach is provided by the Alauda server.

This server allow the end-user to build easily scripting programs. They are constituted by some already defined basic orders. These orders are mapped on the Actions defined in the Action Factory layer.

A script program launches the Alauda server automatically then sends pre-defined orders to it. The Alauda server then activates the Action Factory server and asks for the execution of the action.

It does not still exist any automatic way of building the basic orders. However, it is very simple to add new order in the Alauda server. Nevertheless, an automatic tool should be provided shortly.

Action Generation Tool

Objectives of this part is to explain the building of an Action Factory layer. This work has to be done by an integrator. An integrator has a good knowledge of the basic CORBA Objects, used for the simulation. He also knows the needs of the end-users in term of the requested inputs and provided outputs for the simulation. The integrator 's work is to define and build the simulation.

An example is provided. We tried to automate most of the steps. We point out the fact that such an approach enables to integrate a set of CORBA objects in a VPE and in Alauda scripting process in around 1 day (with debugging) for an average user. This has to be compared to other way of integration...

The integrator needs to have a good programming skill in C++ and a good knowledge of CORBA without being an expert.

Please see the VPE documentation and the FactoryAction Tutorial in html files to have more information.

1.6 Prerequisites

1.7 Environment

1.8 Configuration Files

1.9 Generating the Action Factory Layer

This step concerns the generation of the source code of the Action Factory layer. Once the user has defined the configuration files, an automatic tool generates the idl, the C++ source code and the program of the server. It also generates the Makefiles.

Prerequisites :

Outputs :

The Working Directory Path is the directory where will be created :

- a directory idl
: will contain all the idl files (of the actions and the FactoryActionFoo)

-a directory include : will contain all the headers files (of the actions and the FactoryActionFoo) and the integrator provided source code for each action (cf 3.5)

- a directory src : will contain all the source C++ files (of the actions and the FactoryActionFoo) and the main of the FactoryActionFoo server.

In the directories idl, src and include, idl, headers and source files are generated. Integrator does not have to edit these files. For each directory, a Makefile is generated.

Examples :

For the actions factory, the program will create :

· FactoryActionFoo_impl.C,

· FactoryActionFoo_impl.h,

· FactoryActionFoo.idl

· FactoryActionFoo_srv_ORBACUS.C

For each action X, the program will create :

· ActionX_impl.C,

· ActionX_impl.h,

· ActionX.idl

For each directory (idl, src, include), the program will create :

- Makefile

Example :

· ActionBar1_impl.C,

· ActionBar1_impl.h,

· ActionBar1.idl

· ActionBar2_impl.C,

· ActionBar2_impl.h,

· ActionBar2.idl

NB : if one of these files already exists, the program will interactively ask if :

- You want to replace existing files (the program will then move existing files in a .bak file)

- You do not want to replace it : the program will then overwrite existing files.

Of course, this only concerns automatically generated files.

1.10 Adding the source Code in the Actions

An action is a CORBA Object implementing an execution method. The automatic generation create the source code corresponding to the CORBA Object. Then, the integrator needs to specify the execution method.

What the user just has to do is to complete

in the implementation of each action, the method : Exec.

For each action XXX, integrator has to fill a file : ExecXXX_impl.include where the main part of the Exec method will be located. This file is then included in the Exec method automatically.

Example : you have to complete :

ExecBar1_impl.include

ExecBar2_impl.include
Automatic generation assure the integrator to find, in the Exec method, some variables corresponding to the inputs, outputs and parameters of the action.

Input Objects are already allocated and filled at this place. They are already named. Name of the objects are build such as : PortXType

Parameters (string) are already allocated and filled.

Output Objects are already declared but not created.

All the inputs, outputs and parameter are named such as : PortXType where :

Port is : Input, Output or parameter

X : is the number of the Port

Type is the class of the object (corresponds to the “Type” of the port given in the Action configuration file).

All the variables names are described in the ActionXXX_impl.C in the exec method just before the place where the ExecXXX_impl.include is included.

WARNING: if an input object is also an output object, this is developer responsability to connect declared such ports together.

Example for an object whose class is Solution:

Output0Solution = Solution::_duplicate(Input0Solution)

NB : User does not have to modify or add anything in FactoryActionFoo files.

1.11 Compiling the Action Factory Server

A complete description of the Makefile rules will soon be delivered.... We propose in this description a new architecture for directories and makefiles.

Prerequisites :

You need to have access to a directory named Rules where are located all the rules for compiling. In this directory, you will find :

· make.xxx.top

· make.xxx.bottom

· config.ZZZ.OS_ID

The make.xxx.top and make.xxx.bottom are the rules for compiling and link-editing. These files are used by the automatically generated makefiles. They are generic.

The config.ZZZ.OS_ID are OS dependant libraries and includes you want to link-edit your code with. Concerning the FactoryActionFoo, a basic config file is enough.

These files are described by a OS_ID : OS_ID should be automatically build in the next version but this is currently not the case. Basically, it is built as follows :

OS_ID = OS_name.Processors.Architecture.Options

OS_name is : IRIX, AIX, Linux etc...

Processors is : r10k ...

Architecture is : MIPS4, MIPS3 etc...

Options is :
n32.db for debug in new 32

 o32.o3 for optimized code in old 32

...

After the generation of the FactoryActionFoo codes, the integrator needs to create a {OS_ID} directory. In this directory, please create 2 directories : lib and bin.
Code Makefiles

Some Makefiles files are automatically generated by the ActionGeneration tool:

· in idl directory

· in src directory

· in include directory

You do not have to edit any of these files.

The only makefile you need to write is the Makefile in the working directory. Here is an example.

You can begin with :

include $(STD_RULES_DIR)/make.global.top

This will include one of the make.global.top files located in the Rules directory. STD_RULES_DIR has to be set as a environment variable.

Then :

#=======================================

Class name

#---------------------------------------

CLASS= FactoryActionFoo

#=======================================

SOURCE directories

#---------------------------------------

SRC_DIR=/Project/Julius/Classes/FactoryActionFoo

DISTRIB_DIR=/Project/Julius/distrib

CLASS is the name of the class. It has to be the FactoryAction<Name of the Factory>. It is a compulsory keyword.

SRC_DIR is the working directory. It is a compulsory keyword.

DISTRIB_DIR is the directory where you want to install the FactoryActionFoo once it will be compiled. It is a compulsory keyword.

Then you will describe the idl, includes and library related to some Corba servers (or ObjectsFactories) you want to include/link edit your code with.

#=======================================

Includes directories for IDL

#---------------------------------------

SERVERS_INSTALL="/Program/Julius/ServersDistrib"

IDL_INCLUDES= \

 -I$(SRC_DIR)/idl \

 -I$(SERVERS_INSTALL)/idl

IDL_INCLUDES is the idl directory you need to include in the idl compilation of the FactoryActionFoo.idl. It is a compulsory keyword.

In the example, SERVERS_INSTALL is the directory where are located all the servers (objects factories) and the libraries (of objects factories and of generic Factory Action) we need. This is an example...

#===

Includes directories for SRC related to other objects

#---

OBJ_INCLUDES= \

 -I$(SRC_DIR)/include \

 -I$(SERVERS_INSTALL)/include

OBJ_INCLUDES is the headers directory you need to include in the compilation of the FactoryActionFoo_impl.C. It is a compulsory keyword.

#===

Libraries related to other objects

#---

FA_STUB = $(SERVERS_INSTALL)/lib/libFactoryAction_stub.$(ORB_NAME).so

FA_SKEL = $(SERVERS_INSTALL)/lib/libFactoryAction_skel.$(ORB_NAME).so

COMMON_STUB= $(SERVERS_INSTALL)/lib/libCommon_stub.$(ORB_NAME).so

COMMON_SKEL= $(SERVERS_INSTALL)/lib/libCommon_skel.$(ORB_NAME).so

DAEMON_STUB=$(SERVERS_INSTALL)/lib/libOrbDaemon_stub.$(ORB_NAME).so FOD_STUB=$(SERVERS_INSTALL)/lib/libFODummy_stub.$(ORB_NAME).so

OBJ_LIBS=\

 $(FA_STUB) \

 $(FA_SKEL) \

 $(FOD_STUB) \

 $(DAEMON_STUB) \

 $(COMMON_STUB)\

 $(COMMON_SKEL)

OBJ_LIBS_STUB=\

 $(FA_STUB) \

 $(DAEMON_STUB) \

$(FOD_STUB) \

 $(COMMON_STUB)

OBJ_LIBS is the libraries we need to link edit with. It has to contain the generic FactoryAction libraries (both stub library and skeleton-implementation library), the common libraries (both stub library and skeleton-implementation library), the OrbDaemon libraries (for automatic activation) and the stub libraries of the servers (objects factories) of which the Actions are client. (here the FactoryActionDummy). OBJ_LIBS is a compulsory keyword.

OBJ_LIBS_STUB is the same with only the stub libraries. OBJ_LIBS_STUB is a compulsory keyword.

Then :

include $(STD_RULES_DIR)/make.global.bottom

Your Makefile should now be completed.

Once you have written the Makefile, you can launch the compilation.

Prerequisites for compiling :

Some environment variables are necessary :

ORBNAME : name of the ORB.

OS_ID : as explained before, an identificator of the OS, architecture etc...

STD_ORB_RULES : this is the complete path of a configuration file used for the idl compilation. You can use the “config.ORB.ORBACUS” file located in the Rules directory.

STD_LIBS_RULES : this is the complete path of the configuration you want to use containing the libraries and includes useful in the compilation of your code (without the Corba servers libraries). You can use for example “config.BASIC.OS_ID” in the Rules directory.

Warning : compulsory keywords in this file are : USER_INCLUDES, USER_CCC_FLAGS, USER_CC_FLAGS, USER_F77_FLAGS, USER_F77_INCLUDES, USER_LIBS, FTNLIBS, FTNLIBS2, STDLIBS2.

STD_COMPIL_RULES : this is the complete path of the configuration you want to use containing the libraries and includes useful in the compilation of your code (without the Corba servers libraries). You can use for example “config.BASIC.OS_ID” in the Rules directory.

Warning : all keywords written in config.BASIC.OS_ID are compulsory keywords of this configuration files.

STD_RULES_DIR : the complete path of the directory where are located the make.xxx.top and make.xxx.bottom files (the Rules directory indeed...).

The best way of setting environment variables for compilation is to write a myterm file, for example in tcsh :

setenv ORBNAME ORBACUS

setenv OS_ID IRIX.r10k.MIPS4.n32.db

#

Standard rules for ORBacus

#

setenv STD_ORB_RULES /Devel/Plateforme/Rules/config.ORB.${ORBNAME}

#

Standard Compilation Rules

#

setenv STD_LIBS_RULES /Devel/Plateforme/Rules/config.BASIC.${OS_ID}

setenv STD_COMPIL_RULES /Devel/Plateforme/Rules/config.COMPIL.${OS_ID}

setenv STD_RULES_DIR /Devel/Plateforme/Rules

For compiling, type :

make

The make step will :

· compile idl

· compile source

· create library and place them in ${OD_ID}/lib (this directory has to be created)

· compile server main

· link edit the server FactoryActionFoo and place it in ${OD_ID}/bin (this directory has to be created)

· create the html documentation from idl and place it in doc/html/RefGuide (this directory has to be created)

Then for installation (in the directory specified in the Makefile), type :

make distrib

1.12 Building the VPE Modules

Please see the users guide and tutorial of the VPE.

1.13 Creating the Alauda Orders

Please see the users guide and tutorial of Alauda.

� INCORPORER Visio.Drawing.5 ���

� INCORPORER MS_ClipArt_Gallery ���

© 1998, 1999, 2000 - Dassault Aviation France - All Rights Reserved, Proprietary Data –
18

[image: image4.png]_1008771411.vsd
ReadMesh�

ReadSol�

Compute
Euler�

Compute
Drag�

Data flow programming�

ReadMesh(MyMesh);
ReadSol(MySol);

ComputeEuler(MyMesh, MySol);

ComputeDrag(MyMesh,MySol);�

Script programming�

			 		 Action factory�

ReadMesh�

ReadSol�

Compute
Euler�

Compute
Drag�

Object factories list�

Objects list�

MyEulerFactory = bind("MySP2Eugenie");
MyPostFactory = bind('MyJTkSGI");

My3D = bind("Grid3D");
MyEugenie = MyEulerFactory->Create();
MyEugenie->SetMesh(My3D->GetMesh());
MyEugenie->SetSol(My3D->GetSol());
MyEugenie->Solve();

MyGlobalInteg = MyPostFactory->Create(My3D);
MyGlobalInteg->GetDrag(); �

Direct CORBA
process controller programming�

Euler
Factory�

JTk
Factory�

3D grid�

Object implementation�

Processor
1�

Processor
2�

Processor
3�

Processor
N�

Parallel implementation�

_1011424042

