
 Action factory's VPE − v0.3b

Table of Contents

Action factory's VPE − v0.3b..1
Visual programming tools..1

Requirements ...2

Overall presentation ..3
 Introduction ..3
 Designing the steps of the process ..4
 Packaging the elements of the process ...5
 Designing the process ...6
 Checking the Action Factory and generating the wrapper ...7
 Implement the behaviour of individual actions ...9
 Run the process ...9

How to use Factory Editor ..11
 Set factory name and description ..12
 Set used types ...13
 Add an action ...13
 Set action name and description ..14
 Set action input and output ports ...15
 Set action parameters ..15
 Set action servers ..16
 Load and save individual actions ...16
 Load/save the factory, generate the C++ wrapper ...17

How to use Map Editor ..18
 Loading action descriptions ...18
 Creating and interacting with action boxes ..20
 Action boxes internal details ..22
 Connecting action boxes ..24
 Loading and saving a map ...25
 Firing action boxes ...25
 Auto−fire and parallel pathes ...26
 Execution control with conditions ...27
 Triggers ..27
 Parameter actions ..28
 Command actions ..28
 Groups ...29

Tutorial..31
 Define factory basics ..32
 Add action "LoadMesh" ..33
 Add action "WriteMesh" ...34
 Add action "Solver" ..35
 Save your factory ...37
 Load factory in MapEditor ..37
 Create "LoadMesh", "Solver" and "WriteMesh" action boxes ..38

 Action factory's VPE − v0.3b

i

Table of Contents

 Create command box ...38
 Establish connexions ...39
 Run simulation in specification mode, save your map ...39
 Specify servers and generate ..40
 Reload your computationnal path in execution mode ..41
 Choose execution platforms ..41
 Run the real simulation ..41

Copyright notice: ...42

 Action factory's VPE − v0.3b

ii

Action factory's VPE − v0.3b

Visual programming tools

[PDF version]

Action factory's VPE is a set of graphical user interfaces, to help designing actions and action
factories, and to visually design or execute a sequence of actions mostly defined as a
"computational path".
All the tools are built on a toolkit, which should enable easy building of dedicated interfaces for
those who need it.

 Requirements
 Overall presentation
 How to use FactoryEditor
 How to use MapEditor
 Tutorial
 Copyright

Comments, bugs, fixes to t_chevalier@libertysurf.fr.

Action factory's VPE − v0.3b 1

FactoryEditor
MapEditor
Tutorial
mailto:t_chevalier@libertysurf.fr

Requirements
[home]

Action factory's VPE is written in Python. For the GUI, it uses the Tk widget set,
through the Tkinter python interface. It also uses the Python Mega−Widget set, which
is a set of advanced widgets based on Tk for Python.
Finally, it uses Fnorb, which is a CORBA 2.0 compliant ORB for Python (mostly written
in Python itself).

Now here's the blunt list of the products you'll have to install prior to using Action
Factory's VPE:

 Tcl vs 8.0 or later (I used 8.0.5) and Tk vs 8.0 or later (I used 8.0.5)
[GPL product, available from www.tcltk.com or www.scriptics.com]

 Python vs 1.5.2 (I didn't checked 1.6 nor 2.0)
[GPL product, available from www.python.org or www.pythonlabs.com]

 Pmw vs0.8.4
[GPL product, available from www.python.org or python ressource sites (Vault of Parnassus, Starship Python...)]

 Fnorb 1.1 (Beware Fnorb is free for non−commercial use, but a low cost
license is needed otherwise)
[available from Distributed Systems Technology Centre Pty Ltd. or python ressource sites (Vault of Parnassus,
Starship Python...)]

Comments, bugs, fixes to t_chevalier@libertysurf.fr.

[Home]

Requirements 2

http://www.tcltk.com
http://www.scriptics.com
http://www.python.org
http://www.pythonlabs.com
http://www.python.org
http://www.dstc.edu.au
http://www.dstc.edu.au
mailto:t_chevalier@libertysurf.fr

Overall presentation
[home]

• Introduction
• Designing the steps of the process
• Packaging elements of the process
• Designing the process
• Checking the Action Factory and generating the wrapper
• Implement the behaviour of individual actions
• Run the process

 Introduction

Action factory's VPE will enable you to design an executable specification of your
computational path, to test it, and then to generate the C++ ActionFactory CORBA wrapping
required to easily implement your specification.
A further improvement, yet to be published, will enable generation of a Python or C++ batch
process controller, equivalent to the interactive data−flow process controller graphically
designed.

In the following discussions, we will define 3 different type of people :

• Users, which are mainly in charge of running numerical simulations and analysing the
results
They often prefer explaining their needs as a process (sequence of actions, executed in
a specific order), which they would like to be automated (computationnal path /
data−flow approach).

• Integrators, which are mainly in charge of providing users with automated 'meta−tools',
perfectly suited to the problem they are facing, so that they may concentrate on the
physics.
These 'meta−tools' will be assembled from current available numerical simulation tools
(modelers, mesh generators, solvers, post−processors, visualizers, databases
front−ends...)

• Developpers, which are mainly in charge of providing the core of the simulation tools
the integrators will wrap into components for a better usability.
They often prefer structure their developments in modules and classes, to ease
development and maintenance (object−oriented approach).

The Action Factory system is designed to help integrators filling easily the gap between
developpers and users, by providing a clean data−flow to object oriented mapping, and
enabling a quick and mostly automated way to build actions and computational pathes on top
of existing developer's components.
While the Action Factory system is somewhat developer's oriented, the Action Factory's VPE is
more user oriented. It is designed to help users and integrators to build and check actions (the
steps of the process to be automated), to provide the Action Factory tools the specification they
need.

Overall presentation 3

Interestingly, as we will see, the specification will became directly executable as soon as the
underlying implementation will be available.

 Designing the steps of the process

This step may be performed directly by users

First fill the name of the step in the process, ans its description
Then interactively specify incoming and outcoming data for this step of the process
In the ActionFactory's jargon, the step is called an action, and incoming and outcoming data
are exchanged through typed input and output ports of the action.

Interactively specify parameters of that step of the process
In the ActionFactory's jargon, parameters of a step are called the parameters of the action
Then save your action description to file

 Action factory's VPE − v0.3b Overall presentation 4

 Designing the steps of the process 4

Servers may be ignored at this stage, and default save file will be <actionname>.action.xml

 Packaging the elements of the process

This step may be performed directly by users

First fill the name of the process, ans its description Then interactively specify or load the steps
(actions) of the process In the ActionFactory's jargon, all the steps (actions) of the process
are packaged in an action factory.
Then save your action factory description to file.

 Action factory's VPE − v0.3b Overall presentation 5

 Packaging the elements of the process 5

Default save file will be <factoryname>.factory.xml.

 Designing the process

This step may be performed directly by users

Load your action factory in specification mode, to specify how various steps of your process
interact : by connecting upstream action output ports to downstream action input port, you
specify the order of execution and the data transmitted.

 Action factory's VPE − v0.3b Overall presentation 6

 Designing the process 6

Type of transmitted data is checked, and you may test your computationnal path to get a print
report of how it will behave once implemented.

Save your specification: You will directly use it for running your real simulation
as soon as the underlying implementation will be available !

 Checking the Action Factory and generating the wrapper

This should be performed by integrators

Check that type names are consistent with implementation type names available
For each action, list the components you'll need to implement the action
In the ActionFactory's jargon, all the components required to perform a step are called servers.
Then generate your action factory wrapper.

 Action factory's VPE − v0.3b Overall presentation 7

 Checking the Action Factory and generating the wrapper 7

In the directory specified for wrapper generation, you'll find that all the requested IDLs,
headers, sources and Makefiles have been generated.
You'll find in the source directory, source files for each specified action.

An alternate simple too may be used to generate/regenerate already checked factories

 Action factory's VPE − v0.3b Overall presentation 8

 Checking the Action Factory and generating the wrapper 8

 Implement the behaviour of individual actions

This should be performed by integrators

In each of the action implementation source file generated, look for the part to be completed :
input objects are already allocated and filled, parameters too, output objects are already
declarated but NOT created, and all requested servers are already bound through CORBA.
You just have to invoke the appropriate methods on the servers you've asked for, to implement
the behaviour of each action.
Compile your actions and the generated action factory, and package a script for your users to
launch it : you're all set !

Of course, you may need to upgrade some components, or build new ones, if you have not the
appropriate tools to execute the action : there's no miracle, and there will be the work of the
core developpers !
The idea is that if you have the existing underlying code, capable of performing what's required
by the user, it should be very easy to package it the way the user wants it (appropriate
granularity / level of abstraction, appropriate level of parametrization...)

 Run the process

This step may be performed directly by users

Start your action factory : because it inherit from the generic action factory, it will register itself
in the naming service. If there's no naming service available, it will dump it's IOR string which
you will be able to use for direct connection.

You may then from the MapEditor, in execution mode, directly select your factory within the
ones available in the naming service (or connect directly by pasting the IOR).
The MapEditor will dynamically discover which actions are available in the server, which are
the same than the one in the specification.

You may now load your saved computational path. You will have to specify on which host you
want each action to be executed, by filling the 'server' area of each action.
Select '1' for portname if you want dynamic invocation of the underlying servers, or specify the
real portnumber if you want to connect to a specific already running server.

You may now run directly the process you specified

 Action factory's VPE − v0.3b Overall presentation 9

 Implement the behaviour of individual actions 9

Soon, you'll be able, once satisfied with the interactive testing of your process, to generate a
batch version directly from the MapEditor, in Python or C/C++.

Comments, bugs, fixes to t_chevalier@libertysurf.fr.

[Home]

 Action factory's VPE − v0.3b Overall presentation 10

 Implement the behaviour of individual actions 10

mailto:t_chevalier@libertysurf.fr

How to use Factory Editor
[home]

• Set factory name and description
• Set used types
• Add an action
• Set action name and description
• Set action input and output ports
• Set action parameters
• Set action servers
• Load and save individual actions
• Load/save the factory, generate the C++ wrapper

When started, the FactoryEditor will look like this:

How to use Factory Editor 11

By moving your mouse over most widgets and areas, you should have help ballons
popping to help you use the tool.

 Set factory name and description

Start with filling the name of your factory and some description in the upper area:

 Action factory's VPE − v0.3b How to use Factory Editor 12

 Set factory name and description 12

Please note that you don't have to begin your name with 'FactoryAction' : this will be
added automatically.

 Set used types

Then enter the type of the objects you'll have to exchange in the bottom combo−box.
Each entered type is added to the list.
Don't bother if you have typed something wrong, only types used in the actions
input/output ports you'll later describe will be saved.
Don't try to be exhaustive, you will be able to complete this list at any time if you think
some new type is needed.

 Add an action

You're now ready to create ans specify actions, which will have to be repeated for each
action you'll want to add
Push the "Add Action" button to create a new tab in the actions notebook:

You'll be prompted to give a name to your new action:

And a new tab will be generated in the action notebook:

 Action factory's VPE − v0.3b How to use Factory Editor 13

 Set used types 13

In case of any mistake, you can delete an action by setecting it's tab in the notebook,
then push the "Delete Action" button...

 Set action name and description

Fill the name of your action and some description in the upper area:

Please note that you don't have to begin your name with 'Action' : this will be added
automatically.

 Action factory's VPE − v0.3b How to use Factory Editor 14

 Set action name and description 14

 Set action input and output ports

In the "LoadMesh" action we're currently building, there's no input port (the action just
read from file and output a mesh but do not receive anything as input). We will then
directly move to output ports, but input ports specification is just as output port
specification, except in a different tab of the notebook.
Select the "Output ports" tab of the action description notebook, and push the "Add
Port" button in the bottom area of the action description:

a new port description area will appear.
Fill the port name and description, and use right mouse key to pop the type menu. You
should see in this menu all the types you entered in the "Port types" combobox (and
may at this stage complete the port type list by adding new types in the "Port types"
combobox if needed).

You may add as many input and output ports as you need.

 Set action parameters

Select now the "Parameters" tab of your notebook, and push the "Add Parameter"
button in the bottom area of the action description:

a new parameter description area will appear.
Fill the parameter name and description, and use right mouse key to pop the type
menu.
Please note that the VPE tools handle various types for parameters, but that the
current version of the FactoryAction only handle the "string" type.

 Action factory's VPE − v0.3b How to use Factory Editor 15

 Set action input and output ports 15

You may add as many parameters as you need.

 Set action servers

If you're just designing your action factory, you may skip this step. If you're satisfied
with the design and have successfully tested it in the MapEditor, then you'll need to fix
the required servers as a last step before generating the C++ wrapper.
Select the "Servers" tab of your notebook, and push the "Add Server" button in the
bottom area of the action description:

a new server description area will appear.
Fill the server type and description, and note that no 'FactoryObject' string is
prepended to your type string.

Please note that the VPE tools handle several servers per actions, but that the current
version of the FactoryAction only handle one.

 Load and save individual actions

Loop over these instructions to define as many actions as you need.
Note that you may individually load/save actions, which is a convenient way to export
them from one factory to another, or to build a library of actions in which to pick when
designing factories. Use the "Load action" and "Save action" buttons for this :

 Action factory's VPE − v0.3b How to use Factory Editor 16

 Set action servers 16

When asked for a filename for saving, we suggest you choose a name of the form
'foo.action.xml'.

 Load/save the factory, generate the C++ wrapper

Finish with saving your factory by pushing the "Save Factory" button.
You will be asked for a filename, and we suggest you choose a name of the form
'foo.factory.xml'.

If you're sure your factory is OK, you may also decide to generate the C++ wrapper for
implementing it, by pushing the "Generate C++" button.
You'll be asked for a directory name under which a standard directory tree (see
FactoryAction documentation) and files (IDL, headers, sources, Makefiles) will be
generated.

Comments, bugs, fixes to t_chevalier@libertysurf.fr.

[Home]

 Action factory's VPE − v0.3b How to use Factory Editor 17

 Load/save the factory, generate the C++ wrapper 17

mailto:t_chevalier@libertysurf.fr

How to use Map Editor
[home]

• Loading action descriptions
• Creating and interacting with action boxes
• Action boxes internal details
• Connecting action boxes
• Loading and saving a map
• Firing action boxes
• Auto−fire and parallel pathes
• Execution control with conditions
• Triggers
• Parameter actions
• Command actions

When started, the MapEditor will look like this:

By moving your mouse over most widgets and areas, you should have help ballons
popping to help you use the tool.

 Loading action descriptions

The first thing you have to do is to load some factories.
You've two options there :

How to use Map Editor 18

• either you've just specified your factory, have no underlying implementation,
and want to check your factory specification or build your process specification
to check it.
You'll then use the MapEditor in specification mode.

• or your integrator has provided you with an implementation of your specified
factory, and you want to use it to run real computation with the MapEditor as a
process controller.
You'll then use the MapEditor in execution mode.

Be aware that as soon as you've loaded any factory in specification mode, you won't
be able to switch back in execution mode (unless restarting the MapEditor), because it
means that some loaded components have no underlying implementation.
Be aware that if the MapEditor may handle a mix of several factories in a process, the
underlying FactoryAction is not yet capable of that, so you should currently restrain to
using a single action factory at a time.

In
specification
mode

To switch to specification mode, you will first have to push the
"Execution" button, which label should change to "Specification":

 =>

You'll now select the right loading button (which help balloon should
read "Load actions from configuration files"):

And select your saved XML description of your action factory from the
FactoryEditor visual tool.

In
execution
mode

Remembrer you should have started your FactoryAction, using the script
provided by your integrator.
You'll now select the left loading button (which help balloon should read
"Load actions from a running action factory"):

You now have to choose the way for the MapEditor to connect to your
running FactoryAction.

If your FactoryAction registered itself in the ORB naming service (let's
see that as a "Yello page" directory of running servers), you sould see it
available in the "Naming" tab:

 Action factory's VPE − v0.3b How to use Map Editor 19

How to use Map Editor 19

Just press the button corresponding to your Factory in the list.
The MapEditor will then connect to the FactoryAction, and discover on
the fly which actions this FactoryActio implements.

If your FactoryAction does not register itself in the ORB naming service,
then you should select the "Reffile" tab, and enter the name of a file
where the "stringified IOR" of your FactoryAction is stored.
Enter "foo" if yout IOR is stored in file "foo.ref":

You should check that with your integrator, but an IOR looks like that:
IOR:0000000000000.......5365727669636500

The MapEditor will then connect to the FactoryAction, and discover on
the fly which actions this FactoryActio implements.

 Creating and interacting with action boxes

We will now have to define the actions that take part in our process.
Press the right mouse key in the background of the MapEditor:

 Action factory's VPE − v0.3b How to use Map Editor 20

 Creating and interacting with action boxes 20

Discard for the moment the first two entries ("New group" and "New parameter action").
You should find below the name of the loaded factory, with a sub−menu detailing all of
the actions available from this factory.
Select one of the actions, to make an action box appear in the working area:

Each time you'll select an action from the background popup menu, you'll create such
an action box. You'll so be able to create an action box for each of the steps of your
process.
Now, let's see the basic way of interacting with these action boxes, to organize our
workspace ares :

• First, by dragging the left mouse button on the background, you'll move the
complete area.

• By dragging the left mouse button on the name of the action box, you'll move
this box alone.
(just clicking with left mouse will pop the action box to the front)

• By pushing the "O" button, you'll open the action box to edit various parameter
values (we'll see that in detail later), and pushing the "o" button again will close
the action box to it's previous state.

• By pushing the ">" button, you'll ask the action to be executed.
Note that when the button is not green, the action can't be executed because
data are missing on the input port.
If (like on the previous figure) the button is green, it means that there are data
on the input ports, available and ready to be processed; or that the action has
no input port so it is always ready to fire.

• By pushing the "X" button, you'll delete this action box.
• By pressing the right mouse key on the lower left orange rectangular area,

you'll get a popping menu with the available input ports.
(we'll see later how to use it for connecting actions).

• By similarily pressing the right mouse key on the lower right orange rectangular
area, you'll get a popping menu with the available input ports.

• By pressing the middle mouse key on either orange rectangular port area, you'll
get on the standard output (listing) a dump of the connection status.

Help balloons should help you to remember these commands.

 Action factory's VPE − v0.3b How to use Map Editor 21

 Creating and interacting with action boxes 21

 Action boxes internal details

Let's see now how to set the details of each action box. Fist, you'll need to open it
using the "O" button, which shoud make your action box look like :

The first lines shows the parameters, that were specified as required for the action
(here in this figure "Filename" and "InitialSolValue"). For each of them, an entry field
allow interactive input of their values.
At the end of each parameter line, is a radio−button with three mutually exclusive
options: "GS", "GU" and "Local". For understanding these, please create two identical
action boxes (two instances of the some action), and open them.

• "GS" stands for "Global Shared". When this option is selected, the
corresponding parameter is replicated in the "Global Area", at the left of the
MapEditor.

Set one of your parameters as "Global Shared", and try changing it's value :
any change in the action box area is repercuted instantly in the global area and
vice−versa.
Set now the same parameter as "Global Shared" in your other action box : the
three values are now linked. Changing the value in any of the two action boxes
or the global area immediately update the two others.
The parameter value is shared globally over the simulation, among all of the

 Action factory's VPE − v0.3b How to use Map Editor 22

 Action boxes internal details 22

action boxes which declared it "Global Shared". This is usefull to insure that
some parameter values are unique among the simulation (physical parameters
such as altitude, or numeriacl parameters such as global iteration number).

• "GU" stands for "Global Unshared". When this option is selected, the
corresponding parameter is replicated in the "Global Area", at the left of the
MapEditor.
But he's now prefixed by it's action name and internal unique number.

Set one of your parameters as "Global Unshared", and try changing it's value :
any change in the action box area is always repercuted instantly in the global
area and vice−versa.
Set now the same parameter as "Global Unshared" in your other action box :
another different field is set in the global area (differing by the action internal
unique id, seen here as a number). This secong global field is linked to the
second action box parameter in the same way the first is linked to the first
action box parameter.
The parameter values is shown globally regarding to the simulation, but their
values are not shared. This is mostly usefull from the user−interface point of
view, to bring in the global area some important parameters of the simulation
for which you don't want to have to find the action box and open it to edit the
parameter value.

• "Local" stands for "Local" (!). Well, that's the default behaviour : the only way to
change a "Local" parameter is to open the action box and set it's value.

At the bottom of the action box is the underlying servers description. If you're in
specification mode, you may forget that part, but in execution mode, you'll have to fill
it.
Check with your integrator for filling this part, which should be improved in next
release. Especially, you'll need to know if you've an automatic activation available or
not (it's recommended and available with most commercial packages such as Orbix
and Visibroker. We provide a custom one for Orbacus in FactoryAction).
If you've an automatic activation available, you'll just have to fill the name of the
underlying servers to be activated, the host on which you wish them to be spawned,
and leave the port number to "1".
If you've no automatic activation, you'll have to start manually the underlying servers,

 Action factory's VPE − v0.3b How to use Map Editor 23

 Action boxes internal details 23

then specify their name, the host on which they were started, and their listening port
number.

 Connecting action boxes

Let's now connect action boxes together, to streamline the process and express how
data flows from action to another.
Push right key mouse on the output port (right) bottom orange area of the upstream
action, and select the data to be flushed downward :

Then push right key mouse on the input port (left) bottom orange area of the
downstream action, and select the data to be accepted as input :

The two boxes are now connected, and you may check that connection prerssing
middle mouse button either on upstream action output port area or downstream action
input port area (and look at the listing) :

Note that you may delete the link by just clicking on it (you've to be precise !) with the
left mouse key.

 Action factory's VPE − v0.3b How to use Map Editor 24

 Connecting action boxes 24

 Loading and saving a map

You may now save your defined computationnal path, by selecting the usual "save"
icon in the upper toolbar (i.e. the floppy) :

You'll be able to reload it later in the MapEditor using the usual "open" icon.

 Firing action boxes

Now clicking on the fire (">") button of upstream action (in the exemple shown
"LoadMesh") should send data downstream and make next action (here "Solver")
ready to fire (the ">" button should pass to green) :

Clicking on the fire (">") button of downstream action ("Solver") should start this action
and consume the available input data (the ">" button should pass to red) :

If you try to fire N times the upstream action, you'll be able to fire N times the
downstream action before the fire button turns to red, because the inputs are
buffered.
The same if you've two upstream actions filling a downstream action and fire both
upstream actions, two data will be buffered on the input port of downstream action,
allowing her to fire two time (collector default behaviour) :

 Action factory's VPE − v0.3b How to use Map Editor 25

 Loading and saving a map 25

 Auto−fire and parallel pathes

If we build now a chained sequence of three actions :

You may fire all three modules one by one in manual mode, or press button "Manual
fire" in the upper toolbar. The button should switch to "Auto fire" :

If you fire now manually the first action of the sequence, all downstream actions are
fired as soon as all input ports have been provided with data.
Let's now build a two path computationnal sequence :

Fire first action : when its execution if finished, data is sent downstream to both
connected "Solver" modules which start simultaneously. For each action execution,
the MapEditor create an independant thread, thus allowing several actions from paralel
pathes to execute simultaneously.
Be aware that the standard generated FactoryActions are not yet multi−threaded in this
version, so that some FactoryActions will not be able to take advantage of that.

 Action factory's VPE − v0.3b How to use Map Editor 26

 Auto−fire and parallel pathes 26

 Execution control with conditions

You may set conditions on the global values, by pressing left mouse key on the button
which is on the right of the global value entry field :

While the condition is verified, the test appears surrounded in green :

If as a result of any action changing the parameter value, the test is not any more
verified, it will appears surrounded in red, and the execution mode is automaticazlly
switched back to "Manual fire" thus stopping the process (except by manual
continuation or analysis) :

 Triggers

There are some cases, when you'll want to sequence two actions without having any
data to be flushed from one to the other (ex: start a plotting software when the output
file has been generated). You will then need a way for upstream action to signal
downstream action that it should start.
Triggers are designed to solve this problem.
You may connect any output port to an input trigger port, especially an output trigger if
you've nothing else to send downstream. For the trigger to be active, the "Use trigger"

 Action factory's VPE − v0.3b How to use Map Editor 27

 Execution control with conditions 27

checkbox should be activated :

Be aware that once the input trigger is activated, it may receive any kind of data which
it will not try to understand, but will need to have data available as any other port, for
the action to start.

 Parameter actions

Parameter actions are Python affectations concerning global parameters.
In some cases, you'll want to modify a global parameter without to have a specific
action doing it (ex: increment a global iteration loop counter). You will then need a way
to do it directly from the MapEditor.
Parameter actions are designed to solve this problem.
They should be fired via triggers, and will accept any Python expression of the form :

<global variable name>= function of (<global variable name>)

Be aware that you should for the moment strictly respect Python syntax, and Python is
a dynamically but strictly typed language. This makes expressions difficult and will be
improved in next version.
Here is an example for incrementing a global iteration counter named "Value":

The "Manual trigger" button allow you to test your syntax by running the action without
flushing any output.
You may customize a parameter actions name by pressing right mouse key on its
name.

 Command actions

Command actions are system commands which parameters may contain global
parameters.
In some cases, you'll want to run a system command with one or several

 Action factory's VPE − v0.3b How to use Map Editor 28

 Parameter actions 28

global parameter as arguments, without to have a specific action doing it (ex: launch
an editor on your output listing, or a plotting software on your generated output file).
You will then need a way to do it directly from the MapEditor.
Command actions are designed to solve this problem.
They should be fired via triggers, and will accept any system expression including
global variable which value will be replaced before execution by their current value.
Here is an example for editing automatically an output file :

The "Manual trigger" button allow you to test your syntax by running the action without
flushing any output. You may customize a command actions name by pressing right
mouse key on its name.

 Groups

Groups are a way to wrap several actions and make them appear as a single one. It
may be seen (and it is as a matter of fact !) as an Action Box containing itself a
sub−map editor.
When opened, the Group shows it's internal map editor in which all of the previously
described behavior are available.
The only two specific things about group are :

• First the size grow ("+") and size reduce ("−") buttons, on which you should
push to adapt opened group size (sorry, it's yet still a little ugly and you cat set
size independantly in both directions : there are many improvements planned
around that...).
They are located in the internal map editor toolbar :

 Action factory's VPE − v0.3b How to use Map Editor 29

 Groups 29

• Group ports are the replication of internal Action Boxes ports. To establish
connection from an outer Action box to an inner action box, connect the outer
action ports to the group ports corresponding to the inner action you want to
connect with :

Please be aware that group handling is in alpha development in this version, and
especially the Load/Save is still buggy when dealing with groups.
So experiment with it and provide feedback, but don't rely on them ! Thanks.

Python and C/C++ static generation of a hard wired process controller from a
MapEditor's map is still at prototype version for the moment, so the corresponding
buttons remain inactive:

Comments, bugs, fixes to t_chevalier@libertysurf.fr.

[Home]

 Action factory's VPE − v0.3b How to use Map Editor 30

 Groups 30

mailto:t_chevalier@libertysurf.fr

Tutorial
[home]

• Define the factory basics
• Add action "LoadMesh"
• Add action "WriteMesh"
• Add action "Solver"
• Save your factory
• Load factory in MapEditor
• Create "LoadMesh", "Solver" and "WriteMesh" action boxes
• Create command box
• Establish connexions
• Run simulation in specification mode

.../...
• Specify servers and generate

.../...
• Reload your computationnal path in execution mode
• Choose execution platforms
• Run the real simulation

Start the FactoryEditor :

Tutorial 31

 Define factory basics

[manual]

Set factory name and description :

 Action factory's VPE − v0.3b Tutorial 32

 Define factory basics 32

Define used types :

 Add action "LoadMesh"

[manual]

Add the action and set its name and description :

There are no input ports for this action.
Define output ports:

 Action factory's VPE − v0.3b Tutorial 33

 Add action "LoadMesh" 33

Define parameters:

 Add action "WriteMesh"

Add the action and set its name and description :

 Action factory's VPE − v0.3b Tutorial 34

 Add action "WriteMesh" 34

Define input ports :

There are no output ports.
Define parameters:

 Add action "Solver"

Add the action and set its name and description :

 Action factory's VPE − v0.3b Tutorial 35

 Add action "Solver" 35

Define input ports :

Define output ports:

Define parameters:

 Action factory's VPE − v0.3b Tutorial 36

 Add action "Solver" 36

 Save your factory

[manual]

Save the factory in file "Test.factory.xml".

Start the MapEditor :

 Load factory in MapEditor

[manual]

Switch MapEditor to "Specification" mode, then load your factory descrription from
"Test.factory.xml".

 Action factory's VPE − v0.3b Tutorial 37

 Save your factory 37

 Create "LoadMesh", "Solver" and "WriteMesh" action
boxes

[manual]

Create a "LoadMesh" action box, and set it's internal parameters. Set the "Filename"
parameter as global shared :

Create a "Solver" action box, and set it's internal parameters :

Create a "WriteMesh" action box. Set the "Filename" parameter as global shared to fix
the same Filename value as in LoadMesh :

 Create command box

[manual]

Create a command action box, name it "EditFilename" and set it's internal ordrer to an
editor command ('xterm −e vi Filename' should work almost anywhere):

 Action factory's VPE − v0.3b Tutorial 38

 Create "LoadMesh", "Solver" and "WriteMesh" action boxes 38

 Establish connexions

[manual]

Connect LoadMesh output port MeshOut to Solver input port MeshIn.
Connect Solver output port MeshOut to WriteMesh input port MeshIn.
Connect WriteMesh output port Trigger to EditFilename input port.

On WriteMesh output port, activate the UseTrigger checkbox.

 Run simulation in specification mode, save your map

[manual]

Switch to "Auto Fire" mode, run your specification and look at the listing to check if it
behaves as you wish it should.
Then save your map in "Test.map".

At this stage, the user should give its specification files to the integrator :

• the "Test.factory.xml" file as a specification file

 Action factory's VPE − v0.3b Tutorial 39

 Establish connexions 39

• the "Test.map" as a use case file
The user should keep its "Test.map" file, because it'll be directly used for steering the
simulation once the integrator will have provided a proper implementation.

 Specify servers and generate

[manual]

Launch the FactoryEditor, load the "Test.factory.xml" factory specification, and
complete the "Server" tab of each action notebook with the name of the FactoryObjects
(see FactoryACtion documentation) that will be needed to realize the implementation.
For each "LoadMesh", "WriteMesh" and "Solver" action, specify you'll need the
"FactoryObjectTest" server :

Save your updated factory description, and generate the C++ wrapper :

You should now switch to the FactoryAction tutorial to complete the
implementation of the specified FactoryAction.
Let's assume we're back in user's role, with a finished implementation. Our
integrator gave us a FactoryActionTest, and we started it.

 Action factory's VPE − v0.3b Tutorial 40

 Specify servers and generate 40

 Reload your computationnal path in execution mode

[manual]

Leave MapEditor in "Execution" mode, then load your factory description from the
running FactoryActionTest.
Load your saved map "Test.map".

 Choose execution platforms

[manual]

For each of the "LoadMesh", "WriteMesh" and "Solver" action boxes, you'll need to
specify the host on which you'll want your simulation to run.
See with your integrator if he's set the automatic activation or not, and act accordingly
(see manual).
Save your updated computationnal path in "Test.map".

 Run the real simulation

[manual]

Switch to "Auto Fire" mode, and run your computation !

Comments, bugs, fixes to t_chevalier@libertysurf.fr.

[Home]

 Action factory's VPE − v0.3b Tutorial 41

 Reload your computationnal path in execution mode 41

mailto:t_chevalier@libertysurf.fr

Copyright notice:
 GNU GENERAL PUBLIC LICENSE
 Version 2, June 1991

 Copyright (C) 1989, 1991 Free Software Foundation, Inc.
 675 Mass Ave, Cambridge, MA 02139, USA
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

 Preamble

 The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software−−to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.

 When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

 To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

 For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

 We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

 Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.

 Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.

 The precise terms and conditions for copying, distribution and
modification follow.

Copyright notice: 42

 GNU GENERAL PUBLIC LICENSE
 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

 0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

 1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

 2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

 a) You must cause the modified files to carry prominent notices
 stating that you changed the files and the date of any change.

 b) You must cause any work that you distribute or publish, that in
 whole or in part contains or is derived from the Program or any
 part thereof, to be licensed as a whole at no charge to all third
 parties under the terms of this License.

 c) If the modified program normally reads commands interactively
 when run, you must cause it, when started running for such
 interactive use in the most ordinary way, to print or display an
 announcement including an appropriate copyright notice and a
 notice that there is no warranty (or else, saying that you provide
 a warranty) and that users may redistribute the program under
 these conditions, and telling the user how to view a copy of this
 License. (Exception: if the Program itself is interactive but
 does not normally print such an announcement, your work based on
 the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based

 Action factory's VPE − v0.3b Copyright notice: 43

Copyright notice: 43

on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

 3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

 a) Accompany it with the complete corresponding machine−readable
 source code, which must be distributed under the terms of Sections
 1 and 2 above on a medium customarily used for software interchange; or,

 b) Accompany it with a written offer, valid for at least three
 years, to give any third party, for a charge no more than your
 cost of physically performing source distribution, a complete
 machine−readable copy of the corresponding source code, to be
 distributed under the terms of Sections 1 and 2 above on a medium
 customarily used for software interchange; or,

 c) Accompany it with the information you received as to the offer
 to distribute corresponding source code. (This alternative is
 allowed only for noncommercial distribution and only if you
 received the program in object code or executable form with such
 an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

 4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

 5. You are not required to accept this License, since you have not

 Action factory's VPE − v0.3b Copyright notice: 44

Copyright notice: 44

signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

 6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

 7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty−free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

 8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

 9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

 Action factory's VPE − v0.3b Copyright notice: 45

Copyright notice: 45

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

 10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

 NO WARRANTY

 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

 END OF TERMS AND CONDITIONS

 Action factory's VPE − v0.3b Copyright notice: 46

Copyright notice: 46

	Table of Contents
	Action factory's VPE - v0.3b
	Visual programming tools

	Requirements
	Overall presentation
	 Introduction
	 Designing the steps of the process
	 Packaging the elements of the process
	 Designing the process
	 Checking the Action Factory and generating the wrapper
	 Implement the behaviour of individual actions
	 Run the process

	How to use Factory Editor
	 Set factory name and description
	 Set used types
	 Add an action
	 Set action name and description
	 Set action input and output ports
	 Set action parameters
	 Set action servers
	 Load and save individual actions
	 Load/save the factory, generate the C++ wrapper

	How to use Map Editor
	 Loading action descriptions
	 Creating and interacting with action boxes
	 Action boxes internal details
	 Connecting action boxes
	 Loading and saving a map
	 Firing action boxes
	 Auto-fire and parallel pathes
	 Execution control with conditions
	 Triggers
	 Parameter actions
	 Command actions
	 Groups

	Tutorial
	 Define factory basics
	 Add action "LoadMesh"
	 Add action "WriteMesh"
	 Add action "Solver"
	 Save your factory
	 Load factory in MapEditor
	 Create "LoadMesh", "Solver" and "WriteMesh" action boxes
	 Create command box
	 Establish connexions
	 Run simulation in specification mode, save your map
	 Specify servers and generate
	 Reload your computationnal path in execution mode
	 Choose execution platforms
	 Run the real simulation

	Copyright notice:

